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Green’s function of wave field in media with one-dimensional large-scale periodicity
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The Green’s function of the wave field in a medium with a smooth one-dimensional periodicity is consid-
ered. The solution is constructed by the WKB method. It is shown that at large distances there is an analogy
between the Green’s function in a medium with one-dimensional periodicity and the Green’s function in an
anisotropic uniaxial medium. The periodic system is distinguished from an anisotropic medium by a discon-
tinuity of the wave vector surface and a break of beam vector surface. The forbidden zone corresponds to
capture of beams with small angles of incidence and formation of a wave guide channel. Within this wave
guide channel the Green’s function asymptotic differs from 1/r behavior. The fields outside and inside of the
wave channel are described within the framework of a unique approach. A detailed analysis of the obtained
results is carried out.@S1063-651X~98!15912-3#

PACS number~s!: 42.25.Bs, 41.20.Jb, 42.15.Dp
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I. INTRODUCTION

There exist a set of physical systems with properties
riodically varying in space. Studying the propagation a
scattering of waves is one of the most effective methods
such systems investigations.

Rather frequently we deal with systems possessing o
dimensional periodicity. In particular, these problems oc
in acousto-optics@1#, holography@2#, integrated and optica
electronics@3#, x-ray diffractive optics@4#, and propagation
of waves in multilayer coverings.

Recently the special interest appears to be research
electromagnetic wave propagation in three-dimensional p
odic dielectric structures~photonic band structures! @5–8#.
Much attention is devoted to research into anisotropic
hydrotropic periodic media. In particular, many interesti
results are obtained for the optics of liquid crystals@9#.

When studying the propagation of waves in periodic s
tems the basic attention is paid to eigenwaves. However,
solution of many problems requires knowledge of t
Green’s function of the wave equation, i.e., the field o
point source. Particular attention has been paid to study
Green’s functions for systems with a complex structu
@5,10–14#.

The medium with one-dimensional periodicity was co
sidered in@10,11,13#. The complexity of the problem can b
seen in the fact that, in contrast to cases of the ordin
isotropic and anisotropic media, in our case the Gree
function depends on both vector arguments separately. F
weakly inhomogeneous medium with a small-scale period
ity the Green’s function was considered in@11#.

In the present work we study systems with an arbitr
amplitude of periodicity for cases of period being large co
pared to the wavelength. The Green’s function is calcula
for any distances from the source. The case of large dista
is analyzed in detail. It is shown that forbidden zones exis
such media. For directions outside of the forbidden zones
structure of the field is similar to one in the media wi
PRE 591063-651X/99/59~1!/1184~9!/$15.00
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uniaxial anisotropy. In particular, a surface of wave vect
is not spherical and the directions of wave and beam vec
do not coincide. Particular attention is paid to the study
the forbidden zones and propagation of waves in a w
channel. The results are illustrated by numerical calculatio

The paper is organized as follows. General equations
various approaches for solution of considered problem
presented in Sec. II. In Sec. III we consider the Gree
function in periodic media with a large-scale periodicity.
Sec. IV the origin of forbidden zones is discussed. In Sec
we study the wave propagation in the wave channel.

II. GENERAL EQUATIONS

Let us consider the propagation of waves in an isotro
inhomogeneous medium. In what follows we are not int
ested in polarization effects. Then the field of the wa
u(r ,t) obeys the scalar equation

S D2
1

c2~r !

]2

]t2D u~r ,t !50, ~1!

wherec(r ) is the velocity of the wave andu(r ) is the am-
plitude of the wave.

For harmonic time dependence,u(r ,t)5u(r )e2 ivt, we
arrive at the Helmholtz equation

@D1k2~r !#u~r !50, ~2!

wherek(r )5v/c(r ) is the wave number.
Let the medium be periodic along thez direction with the

periodd. Thenk2(r ) can be presented in the form

k2~r !5k0
2@11 f ~z!#, ~3!

where f (z) is a periodic function,f (z1d)5 f (z).
The Green’s function satisfies the following equation:

@D1k0
2
„11 f ~z!…#T~r2r1 ;z,z1!5d~r2r1! ~4!
1184 ©1999 The American Physical Society
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PRE 59 1185GREEN’S FUNCTION OF WAVE FIELD IN MEDIA . . .
and the condition of radiation. Herer5(x,y) is the compo-
nent of ther vector normal to thez axis, andd~r ! is a three-
dimensionald function. Due to spatial periodicity along th
z axis the Green’s function depends on both argumentsz and
z1 separately.

Since the medium is uniform in the transverse planexy
we use a two-dimensional Fourier-transform of Eq.~4!,

F ]2

]z2
2q21k0

2
„11 f ~z!…GT~q;z,z1!5d~z2z1!. ~5!

Here

T~q;z,z1!5E drT~r;z,z1!exp~2 iqr!. ~6!

Equation ~5! with the radiation condition is the Sturm
Liouville problem. Therefore it is possible to use the we
known theorems. Namely, the Green’s function can be w
ten as

T~q;z,z1!5
1

W
3H u1~z!u2~z1! for z>z1 ,

u1~z1!u2~z! for z,z1 ,
~7!

where u1(z),u2(z) are independent solutions of the corr
sponding homogeneous equation,

F ]2

]z2
2q21k0

2
„11 f ~z!…Gu~z!50, ~8!

with W5u1(z)u28(z)2u18(z)u2(z) being the Wronskian of
functions u1(z) and u2(z). Value W does not depend on
z since Eq.~5! does not contain the firstz derivative.

In order to construct the Green’s function satisfying t
radiation condition it is necessary to takeu1(z) describing
the wave propagating atz→1`, andu2(z) should describe
similarly the wave propagating along thez→2` direction.
Equation ~8! is the Hill equation and, according to th
Floquet theorem the solutionsu1(z) andu2(z) can be written
as @15#

u1~z!5F1~z!eimz, u2~z!5F2~z!e2 imz, ~9!

whereF1(z) andF2(z) are periodic functions ofz with the
period d, and m is a constant. The functionsF i(z),
( i 51,2) and constantm are determined by theq parameter.
For certain values ofq the constantm becomes complex an
wavesu1(z) andu2(z) decay and increase, respectively. T
region of these values ofq corresponds to the so-called fo
bidden zones@16#. In coordinate representation these regio
yield exponentially small contributions to the Green’s fun
tion asymptotics atur2r1u→`. An exception is the case
when r and r1 are in the same layer.

We consider an inhomogeneous medium withf (z)
5h cos(2az), wherea5p/d, h,1 is a factor, describing
t-

s
-

an amplitude of nonhomogeneity, andd is the period of the
structure. In this case Eq.~8! is reduced to the Mathieu equa
tion

F ]2

]z2
2q21k0

21k0
2h cos~2az!Gu~z!50. ~10!

The formal solution of the Hill equation is known@16#, but
obtaining relevant numerical results is a difficult proble
Even in the case of the Mathieu equation consistent anal
requires introducing of small parameters. Namely, in R
@11# a case of weakly nonhomogeneous media withh!1
were considered. Due to the evenness of thef (z) function it
is possible to takeu1(2z) for theu2(z) function. In this case
the solution~7! has the form

T~q;z,z1!5
1

W
eimuz2z1u3H F~z!F~2z1! at z>z1 ,

F~z1!F~2z! at z,z1 .
~11!

The parameterm and functionF(z) were sought within the
framework of the perturbation theory for systems with t
period of structure of the order of a wavelength, i.e., fork0
;a. In such systems forbidden zones exist in the casek0
.a. The account of fields in the vicinity of forbidden zone
requires modification of the perturbation theory. When p
rameterk0 /a is large the number of forbidden zones i
creases infinitely whereas their width correspondingly te
to zero. In this case applying the Floquet theorem to desc
tion of the field becomes inconvenient. On the other hand
smooth periodicity the parameters of the medium vary ins
nificantly at a distance of a wavelength and the WK
method becomes more suitable for description of the fiel

III. GREEN’S FUNCTION IN A MEDIUM
WITH A LARGE-SCALE PERIODICITY

We consider a case when parameterh is not small, and
the period of structured is much greater than the waveleng
l52p/k0 , that is,V5k0 /a@1.

Let us introduce the dimensionless variablej5az. Then
Eq. ~10! is written as

F ]2

]j2
2

q2

a2
1V2~11h cos 2j!Gu~j!50. ~12!

Solving Eq. ~12! by the WKB method we get in the firs
approximation

u1,2~z!5G2~1/2!~q,az!expS 6 iVE
az0

az

dj8G~q,j8! D ,

~13!

wherez0 is an arbitrary coordinate determining amplitud
of the functionsu1(z) and u2(z) and functionG(q,j) is
equal to



s
s

is-
en
q

se
r

ve
n

a

c-
d
ia
l- far
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G~q,j!5A12
q2

k0
2

1h cos 2j. ~14!

It is easy to verify that the Wronskian of the function
u1(z) andu2(z) does not depend onz and is determined a
W522ik0 . Then Green’s function~7! has the form

T~q;z,z1!5
i

2k0G1/2~q,az!G1/2~q,az1!

3expS iVU E
az1

az

djG~q,j!U D . ~15!

In coordinate representation we get

T~r2r1 ;z,z1!5
i

8p2k0
E dq

3
exp@ i „Vu*az1

az djG~q,j!u1q~r2r1!!]

G1/2~q,az!G1/2~q,az1…
.

~16!

Equation ~16! describes the Green’s function at any d
tances. We are interested in the asymptotics of the Gre
function in the far zone. So we calculate the integral in E
~16! for ur2r1u@l by the method of the stationary pha
@17#. In order to do this it is necessary to find a stationa
point qst and to expand the exponent in Taylor series o
p5(q2qst) up to terms of second order. In all nonexpone
tial factors it is possible to setq5qst . The remaining
Gaussian integral is easily calculated:

E expS i

2
pĤpDdp5

2p is

Audet Ĥu
. ~17!

Here Ĥ is the real symmetric matrix of the second deriv
tives calculated atq5qst ~Hesse matrix!. The factors in Eq.
~17! depends on signs of real eigenvaluesm1 andm2 of the
Ĥ matrix: for m1.0, m2.0, s51; for m1m2,0, s52 i ;
for m1,0, m2,0, s521 @17#.

The stationary pointqst is determined from the equation

¹qS VU E
az1

az

djG~q,j!U1q~r2r1! D 50. ~18!

Equation~18! may be rewritten as

k0
2ur2r1u

qst
5VU E

az1

az dj

G~qst ,j!U, qst5qst

r2r1

ur2r1u
.

~19!

We take into account that the primitive of a periodic fun
tion can be presented as a sum of a linear function an
periodic one with the same period, as that for the init
function @15#. In what follows we will use the Legendre e
liptic integrals@18#
’s
.

y
r
-

-

a
l

K~a!5E
0

p/2 dc

A12a2sin2c
,

E~a!5E
0

p/2

dcA12a2sin2c, ~20!

F~f,a!5E
0

f dc

A12a2sin2c
.

Then the solution of Eq.~19! may be written as

ur2r1u
qst

5
2uz2z1u

pAk0
22qst

2 1hk0
2

3KSA 2hk0
2

k0
22qst

2 1hk0
2D 1B~z,z1!, ~21!

whereB(z,z1) is the periodic function,

B~z,z1!5
1

ak0G~qst,0!

3UFS az,
2h

G~qst,0! D2FS az1 ,
2h

G~qst,0! D U
2

2uz2z1u
pk0G~qst,0!

KS 2h

G~qst,0! D . ~22!

As seen from Eq.~22! the stationary pointqst depends on the
difference vectorr2r1 and coordinatesz and z1 entering
into functionB(z,z1) separately.

The Hesse matrix in Eq.~17! has the form

Hab~q!5¹qb
¹qaS VU E

az1

az

djG~q,j!U1q~r2r1! D
52

V

k0
2 U E

az1

az dj

G~q,j! S dab1
qaqb

k0
2G2~q,j!

D U .
~23!

The Hessian is equal to

det Ĥ5
V2

k0
4 U E

az1

az dj

G~qst ,j!U
3U E

az1

az dj

G~qst ,j! S 11
qst

2

k0
2G2~qst ,j!

DU. ~24!

According to Eq.~23!, in this casem1,0 andm2,0 and
factors521 in Eq.~17!. Using Eqs.~16!, ~17!, and~24! we
arrive at the expression for the Green’s function in the
zone:
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T~r2r1 ;z,z1!

5
exp„iVu*az1

az djG~qst ,j!u1 iqstur2r1u…

4pk0G1/2~qst ,az!G1/2~qst ,az1!

3F ur2r1u
qst

S ur2r1u
qst

1U E
z1

z qst
2 dz8

k0
3G3~qst ,az8!

U D G2~1/2!

.

~25!

Deriving this expression we have simplified determinant~24!
using Eq.~19!.

We analyze the behavior of the Green’s function at d
tancesuz2z1u considerably exceeding the periodd. In this
case functionB(z,z1) in Eq. ~21! may be omitted, and the
exponent in the expression for the Green’s function~25! is

i F 2

p
uz2z1uAk0

22qst
2 1hk0

2

3ESA 2hk0
2

k0
22qst

2 1hk0
2D 1qstur2r1uG . ~26!

Equation~21! shows that in this caseqst depends on relation
uz2z1u/ur2r1u only. Presenting Eq.~26! in the form

i @qz~z2z1!1qst~r2r1!#, ~27!

where

qz5
2

p
sign~z2z1!Ak0

22qst
2 1hk0

2ESA 2hk0
2

k0
22qst

2 1hk0
2D ,

~28!

one can see that three-dimensional vectorkst5(qst ,qz) may
be considered as a wave vector. Since this vector does
depend on absolute values of coordinatesz andz1 the prop-
erties of the medium become similar to that for the spatia
homogeneous media. The Green’s function in casesuz2z1u
@d is

T~r2r1 ;z,z1!5
exp@ ikst~r2r1!#

4pR~r2r1 ;z,z1!
, ~29!

where

R~r2r1 ;z,z1!5k0G1/2~qst ,az!G1/2~qst ,az1!

3F ur2r1u
qst

S ur2r1u
qst

1
2qst

2 uz2z1u

pk0
3

3E
0

p/2 dj8

G3~qst ,j8!
D G 1/2

.

For a weakly inhomogeneous medium, i.e., at small va
of h, Eq. ~19! for qst and the expression for Green’s functio
~25! admit additional simplifications. In lowest order inh
Eq. ~19! is easily solved and we get
-

ot

y

e

qst5
k0ur2r1u

ur2r1u S 11
husin 2az2sin 2az1u

4auz2z1u D . ~30!

In this case the phase of the Green’s function has the fo

k0ur2r1uS 11
husin 2az2sin 2az1u

4auz2z1u D . ~31!

These formulas are valid if the conditionhur2r1u2!4
(z2z1)2 is fulfilled. Note that withh→0 the amplitude fac-
tor R(r2r1 ;z,z1)→ur2r1u and the Green’s function~29!
passes into that for a homogeneous medium. Equation~31!
shows that the constant phase regions for the Green’s f
tion are the spherical surfaces with small periodic distortio
The corrections in Eqs.~30! and~31! depend not only on the
differenceuz2z1u, but also on values ofz andz1 .

The spatial periodicity at large distances leads to dev
tion of the wave vector surfaces, Eq.~28!, from spherical
ones. As long as the medium has an axial symmetry, th
surfaces are similar to those with the wave vectors
uniaxial anisotropic media having the form of ellipsoid@19#.
However, in our case they are more complicated.

Figure 1 shows they-z plane cross section of a surfac
of wave vectors, calculated from Eq.~28! for two values
of parameterh that describes the depth of modulation:h
50.1 and 0.8. One can see that these surfaces are discon
ous and the breaks are increased with growth ofh. This
break corresponds to the forbidden zone, i.e., to the res
tion for possible directions of wave vectorskst . Formally
emergence of the forbidden zones is a consequence o
functions E(a) as well asK(a) and F(f,a) in Eq. ~20!

FIG. 1. Cross sections of a surface of wave vectors by a pla
containing thez axis, for different depths of modulationh: 1, h
50.1; 2,h50.8 for k0 /a520. The dotted line shows the forbid
den zones;gmax is the maximal possible angle between the wa
vector andz axis for h50.8. It is seen that the value ofkst deter-
mining the phase speed of a wave weakly depends on the w
vector direction. All wave numbers are expressed in terms ofk0 .
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being real only foruau,1. As seen from Eq.~28! this restric-
tion leads to inequalitiesqst

2 <qmax
2 5k0

2(12h) and qz

>qmin5(2/p)k0A2h. If qst.qmax the functionE(a) and
consequentlyqz become complex, and the waves decay w
the extinction length of the order of the wavelength. Letg be
the angle betweenkst and axisz:

tan g5
qst

qz
. ~32!

Then the restriction on possible directions of wave vect
kst can be written asp/22gmax<ug2p/2u<p/2, where

gmax5arctan
qmax

qmin
5arctan

p

2
A12h

2h
. ~33!

Similar to the uniaxial medium in our case the directio
of the beam vector determining the flow of energy and
wave vector do not coincide. The angled between these
vectors can be calculated if we take into account that
beam vector is normal to the surface of wave vectors. Th
we have

cosd5
qstsinu1qzcosu

Aqst
2 1qz

2
, ~34!

whereu is the angle between thez axis and vectorr2r1 .
Figure 2 shows a cross section of a surface of beam

tors corresponding to the surface of a constant phase f
point source. It is seen that this surface has a breakz
5z1 . This break corresponds to the forbidden zones. T
normal to the beam surface determines the direction o
wave vector. The existence of forbidden zones limits
allowable angles between the normal to the beam surface
z axis by an anglegmax. As a result we get the pictur
presented in Fig. 2.

IV. ORIGIN OF THE FORBIDDEN ZONE
IN MEDIA WITH ONE-DIMENSIONAL

LARGE-SCALE PERIODICITY

The existence of forbidden zones in media with larg
scale inhomogeneities seems strange. Usually forbid

FIG. 2. Constant phase surfaces of waves radiated by a p
source. Curves are calculated for the same parameters, as i
previous figure. One can see that at large distances the group s
of a wave along the direction of the periodic structure is apprecia
less than in the transverse direction. Heregmax is the limiting angle
of the normal inclination to this surface andd is the angle between
wave and beam vectors.
s

e

e
s,

c-
a

e
a
e
nd

-
en

zones appear when the size of the inhomogeneities is of
order of the wavelength@16#. In order to understand the ori
gin of the forbidden zones in our problem we introduce t
refractive index

n~z!5A11h cos~2az!. ~35!

This value varies in the limitsA12h<n<A11h. In the
geometric optics approximation we introduce the concep
a beam trajectory described by the curver5r(z). Since the
beam curve in a stratified isotropic medium is in the plane
incidence, we introduce for convenience the coordinate s
tem with they axis lying in the same plane. In each poi
(r,z) the beam obeys the relation

n~z!sin x~z!5C, ~36!

where C is the positive constant andx(z) is the angle of
incidence being counted from the plane normal toz, 0<x
<p/2. Equality ~36! is the Snells law. The anglex(z) is
related to the beam trajectory by the equation

tan2x~z!5@y8~z!#2. ~37!

From Eqs.~36! and ~37! we get

y8~z!56
C

An2~z!2C2
. ~38!

Here signs plus and minus correspond to parts of the b
wherey(z) increases or decreases withz, respectively. To be
definite we choose the part with sign plus. As far as o
problem is concernedn(z) is the periodic function ofz it
follows from Eq.~38! that the derivativey8(z) is a periodic
function of z also. Performing a transition similar to tha
from Eq. ~19! to Eq. ~21! we can write

y~z!5g~z2z0!1M ~z!, ~39!

whereM (z) is a periodic function with a zero average,z0 is
an arbitrary constant, andg is an average tangent of the slop
of the y(z) curve,

g5
aC

p E
0

p/a dz

A11h cos~2az!2C2

5
2C

pA11h2C2
KSA 2h

11h2C2D . ~40!

As long as the functionK(a) is real for uau,1 the value of
the C parameter is limited by the conditionC,C*
5A12h. According to Eq.~40! variation ofC in the region
0<C,A12h leads to variation ofg in the limits from 0 up
to ` since the functionK(a) has a logarithmic divergence a
a→1. Thus, changing the initial slope of the beamx(z1) in
the point z1 and hence the parameterC, we can observe
beams with an arbitrary relationur2r1u/uz2z1u at large
uz2z1u. This means that the surface of beam vectors, Fig
has no forbidden zones. Figure 3 shows the trajectories o
beams outside of the forbidden zone.

In order to explain the emergence of a forbidden zone
the surface of wave vectors, Fig. 1, we introduce the wa
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eed
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PRE 59 1189GREEN’S FUNCTION OF WAVE FIELD IN MEDIA . . .
vectork corresponding to the given beam. For this purpo
we consider variation of the field phase along the beam
tween the pointsr15(y1 ,z1) and r5(y,z),

C5k0E
r1

r
nds, ~41!

where s is the distance along the beam,z.z1 . Using the
expression for an element of an arcds5A11@y8(z)#2dz
and Eq.~38! we present integral~41! in the form

C5k0C~y2y1!1k0E
z1

zAn2~z!2C2dz. ~42!

According to Eq.~42! a transverse part of the wave vectork
is equal tok'5(0,ky), ky5k0C. The longitudinal part of
the wave vectorkz can be calculated if we take into accoun
that the phase~42! coincides with the phase of the wave
Eq. ~25! at C5qst /k0 . Using arguments similar to those i
transition from Eq.~25! to Eq. ~26! we get

FIG. 4. Beam trajectories in the wave channel. Curve 1 co
sponds to a trajectory at (12h)1/2,C,(11h)1/2; curve 2 is the
limiting beam forC5C* 5(12h)1/2.

FIG. 3. Beam trajectories outside of the forbidden zone,C
,C* . The curves are obtained by numerical calculation forh
50.5 and different values ofC: 1, C50.6; 2, C50.7; 3, C
50.707.
e
e-

kz5
2k0

p
A11h2C2ESA 2h

11h2C2D . ~43!

It follows from Eq. ~43! that limiting value C5C*
5A12h corresponds to the relation

k'

kz
5

p

2
A12h

2h
, ~44!

which exactly coincides with the restriction imposed on t
angleg betweenkst and thez axis in Eq.~33!.

Thus, for the introduced wave vectork5(k' ,kz) there
exists a forbidden zone since atC.C* the componentkz in
Eq. ~43! becomes complex and the wave starts to decay.
latter means that for suchC the wave could not propagate a
long distancesz since the extinction is of the order of th
wavelength.

V. FORBIDDEN ZONE AND 2D WAVEGUIDE

From the point of view of the geometric optics this effe
can be explained by the turn~‘‘reflection’’ ! of the beam,
which is possible if the refraction index decreases in
direction of the beam propagation@20#. As a result the beams
with C.C* appear to be ‘‘trapped’’ within the limits of one
layer~Fig. 4!. The length of the beam trajectory between tw
successive reflections can be determined by integrating
right-hand side of Eq.~38!. In order to describe wave propa
gation in the framework of geometric optics it is necessary
sew segments of a beam with indices plus and minus in
~38! taking into account thep/2 phase change at each refle
tion. This approach describes the beam everywhere exc
ing the turn points@20#.

The planesz5zt where the beams change their directio
~are reflected! are determined by the condition sinx(zt)51 in
Eq. ~36!, i.e.,

n~z1!sin x~z1!5n~zt!, ~45!

wherez1 is the position of the source,uz1u,d/2. Equation
~45! has two solutions,

zt1,256
1

2a
arccos

n2~z1!sin2x~z1!21

h
. ~46!

The beam will propagate between planesz5zt1 and z
5zt2 , alternately being reflected from each of them.

So a plane channel of wave propagation is formed. T
boundaries of this channel are the planesz5d/2 and z5
2d/2 where the refractive indexn(z) is minimal. The waves
trapped in this channel satisfy the condition

n~z1!sin x~z1!>A12h5C* . ~47!

The width of the channelzt5uzt12zt2u for a particular
beam depends on the parameterC. The widthzt→0 for C
→A11h andzt→d for C→A12h. Note, that in the limit
C→A12h sliding incidence takes place, and the beam
proaches asymptotically the planez5d/2 ~or z52d/2! with-
out reflection. This beam is also locked in the wave chan
~beam 2, Fig. 4!.
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From Eq.~38! it is possible to get a distance passed by
beam between two successive reflections

yt„z1 ,x~z1!…

5n~z1!sin x~z1!E
zt2

zt1 dz

An2~z!2n2~z1!sin2x~z1!
. ~48!

FIG. 5. Dependence of the distance passed by a beam bet
two reflections along they axis calculated ath50.5.
e

Expressions~46! and ~48! show thatzt and yt may be con-
sidered as functions ofC5n(z1)sinx(z1). At C→A12h the
distanceyt→`. With increasing ofC the functionyt de-
creases, passing through its minimum,ymin , and y*
5dA(11h)/2h at zt→0, i.e., forC5A11h ~Fig. 5!.

First, we estimate the asymptotics of the Green’s funct
at ur2r1u→` based on simple physical grounds. Th
waves, satisfying the condition~47!, will remain in the plane
layer 2d/2<z<d/2, at anyur2r1u. Therefore the energy
density of these waves will decrease asur2r1u21

'ur2r1u21 with increasing the distance from the sourc
Hence the amplitude of the field of a point source behave
ur2r1u21/2 at ur2r1u→` when pointsz and z1 are in the
same wave channel. It differs from the usual situati
uz2z1u→`, when, according to Eq.~25!, the amplitude of a
field decreases asur2r1u21.

In order to find a field of a point source in the wav
channel it is necessary to take into account all orders
reflection @20#. The field inside the wave channel may b
written as

T~r2r1 ;z,z1!5(
N

TN~r2r1 ;z,z1!, ~49!

where TN(r2r1 ;z,z1) is the contribution to the Green’
function of waves undergoingN reflections. This contribu-
tion differs from Eq.~16! as long as in this case it is nece
sary to take into account the contribution of multiple refle
tions to the resulting phase:

en
n

l in Eq.
TN~r2r1 ;z,z1!5 (
m51

2 E dq

i expF i S VNE
azt2~q!

azt1~q!

djG~q,j!1q~r2r1!2
Np

2
1dCN

~m!D G
8p2k0G1/2~q,az!G1/2~q,az1!

. ~50!

ValuesdCN
(m)5dCN

(m)(z,z1 ,q) are contributions to the total phase of distances betweenz1 and the first reflection and betwee
the last reflection andz, respectively. If the first reflection occurs in the planez5zt1 the indexm51, while if it occurs in the
planez5zt2 indexm52. Functionszt1(q) andzt2(q) are determined by Eq.~46! with C5q/k0 . NumberN in Eq. ~49! varies
in the limits N50 andN5ur2r1u/ymin .

At ur2r1u→` integral~50! can be calculated by the method of stationary phase, as it was in the case of the integra
~16!. The equation determining the stationary pointqstN has the form

ur2r1u5Nyt~qstN!1drN
~m! , ~51!

wheredrN
(m)5drN

(m)(z,z1 ,qstN) is a sum of distances passed by the wave along ther axis ~i! from the sourcer1 to the first
reflection and~ii ! from the point of the last reflection to the observation pointr . The functionyt(q) is determined by Eq.~48!
with C5q/k0 . Then Eq.~50! can be written as

TN~r2r1 ;z,z1!5(
qstN

T~qstN ;r2r1 ;z,z1!, ~52!

where

T~q;r2r1 ;z,z1!52sq1/2yt
1/2~q!uyt8~q!u21/2

expF i ur2r1uXq1k0yt
21~q!S E

azt2~q!

azt1~q!

djG~q,j!2
l

4D CG (
m51

2

exp~ idCN
~m!!

4pk0ur2r1uG1/2~q,az!G1/2~q,az1!
.

~53!



se

e

to

m
-

W

p
a
th

te

f
-

cts
ns.

-

-
-

t

PRE 59 1191GREEN’S FUNCTION OF WAVE FIELD IN MEDIA . . .
The summation overqstN in Eq. ~52! takes into account the
possibility of the presence of several waves for any
(N,m). It is seen from Fig. 5 that periodyt can correspond to
two different values of the parameterC. According to Eq.
~51! this means that one set of (N,m) can correspond to two
different values ofqstN , i.e., two waves radiated from th
source.

We study thez dependence of intensity proportional
uT(r2r1 ;z,z1)u2 at ur2r1u→` in the wave channel2d/2
<z<d/2. For further analysis it is convenient to pass fro
the summation overN andqstN to the summation over sta
tionary pointsqst

( i ) , corresponding to all waves, radiated inr1

and transmitted to the observation pointr . The set ofqst
( i ) ,

i 51,2, . . . is enumerated in increasing order of values.
have

uT~r2r1 ;z,z1!u2

5(
qst

~ i !
T~qst

~ i ! ;r2r1 ;z,z1!(
qst

~ j !
T* ~qst

~ j ! ;r2r1 ;z,z1!.

~54!

The experimental measurements of intensity always im
a procedure of averaging over time, sizes of the source
the receiver, random inhomogeneities, etc. Therefore
contributions of terms with a large differenceDq5qst

( i )

2qst
( j ) may be omitted since their phases are not correla

Preserving in Eq.~54! only terms with small differenceDq
and taking into account that the averaged module oT
(q;r2r1 ;z,z1) is a smooth function ofq, the average inten
sity ^uT(r2r1 ;z,z1)u2& may be written as

FIG. 6. Distribution of intensityJ5^uT(r2r1 ;z,z1)u2&ur2r1u
inside the wave channel atur2r1u→`, for the source at the poin
~r,0!, calculated ath50.5.
t

e

ly
nd
e

d.

^uT~r2r1 ;z,z1!u2&

5(
qst

~ i !
uT~qst

~ i ! ;r2r1 ;z,z1!u2D~qst
~ i ! ,r2r1 ,z,z1!,

~55!

where

D~qst
~ i ! ,r2r1 ,z,z1!5

1

2 (
m51

2

(
Dq~ l !

^exp@ iDCm
~ l !~qst

~ i !!#&

~56!

is the factor taking into account the interference effe
between waves with close numbers of reflectio
Here Dq( l )5Dq( l )(qst

( i ))5qst
( l 1 i )2qst

( i ) and DCm
( l )(qst

( i ))
5Cm(qst

( l 1 i ))2Cm(qst
( i )) ~the latter being the phase differ

ences of waves with wave numbersqst
( l 1 i ) andqst

( i )!. As long
as only the terms with smalll interfere, it is possible for the
summation overDq( l ) in the functionD to spread from2`
up to 1`.

Since the terms withm51,2 do not interfere we get from
Eq. ~53!

uT~q;r2r1 ;z,z1!u2

5
qyt~q!

8p2k0
2G~q,az!G~q,az1!ur2r1u2uyt8~q!u

.

~57!

Let us consider a wave with a wave numberqst
( i ) . The

number of reflections undergone by the waveN is a function
of qst

( i ) : N5N(qst
( i )). For a wave with the nearest wave num

ber qst
( i 21) the number of reflections will change by 1. Ne

glecting small additionsdrN
(m) we have from Eq.~51!

ur2r1u

yt~qst
~ i !!

2
ur2r1u

yt~qst
~ i 21!!

51. ~58!

Hence fordq5qst
( i 21)2qst

( i ) we get

dq5
yt

2~qst
~ i !!

yt8~qst
~ i !!ur2r1u

. ~59!
It is seen, that with the increase ofur2r1u the sizedq→0. Therefore in the limitur2r1u→` it is possible in Eq.~55! to pass
from summation overqst

( i ) to integration overq. Then Eq.~55! is written as

^uT~r2r1 ;z,z1!u2&5E
k0A12h

k0min@n~z1!;n~z!# D~q,z,z1!qdq

8p2k0
2G~q,az!G~q,az1!ur2r1uyt~q!

, ~60!

or, passing to a variableC5q/k0 , we get

^uT~r2r1 ;z,z1!u2&5
1

16p2ur2r1u
E

A12h

min@n~z1!;n~z!# D~k0C,z,z1!dC

An2~z1!2C2An2~z!2C2S E0

n~z8!5C dz8

An2~z8!2C2D 21

. ~61!
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It is seen from Eq.~61!, thatT(r2r1 ;z,z1);ur2r1u2(1/2) at
ur2r1u→` according to physical reasons discussed earl

Figure 6 shows the distribution of the radiated ene
locked in the wave channel along thez axis. For this purpose
integral ~61! is calculated atD51, which corresponds to
neglect of interference between waves with different nu
bers of reflections. On boundaries of the wave channel
intensity tends to zero, as the area of integration in Eq.~61!
vanishes. Here we should attract attention to the presenc
a sharp peak atz5z1 . Formally it appears due to confluenc
in Eq. ~61! of root type peculiarities atn(z)5n(z1). In this
case the integrand has a pole. It means that the inten
y

f

-

.

s

t.
r.
y

-
e

of

ity

decreases more slowly thanur2r1u21. The physical reason
for such a change of asymptotic atn(z)5n(z1) is that both
the reception and radiation points are situated in the cau
regions. To remove the divergence and to obtain
asymptotic a more detailed analysis of the field in the vic
ity of the caustic is required.
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