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Green’s function of wave field in media with one-dimensional large-scale periodicity
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The Green'’s function of the wave field in a medium with a smooth one-dimensional periodicity is consid-
ered. The solution is constructed by the WKB method. It is shown that at large distances there is an analogy
between the Green'’s function in a medium with one-dimensional periodicity and the Green’s function in an
anisotropic uniaxial medium. The periodic system is distinguished from an anisotropic medium by a discon-
tinuity of the wave vector surface and a break of beam vector surface. The forbidden zone corresponds to
capture of beams with small angles of incidence and formation of a wave guide channel. Within this wave
guide channel the Green's function asymptotic differs fromlihavior. The fields outside and inside of the
wave channel are described within the framework of a unique approach. A detailed analysis of the obtained
results is carried ou{.S1063-651X98)15912-3

PACS numbe(s): 42.25.Bs, 41.20.Jb, 42.15.Dp

[. INTRODUCTION uniaxial anisotropy. In particular, a surface of wave vectors
is not spherical and the directions of wave and beam vectors
There exist a set of physical systems with properties pedo not coincide. Particular attention is paid to the study of
riodically varying in space. Studying the propagation andthe forbidden zones and propagation of waves in a wave
Scattering of waves is one of the most effective methods Of:hannel. The results are illustrated by numerical calculations.
such systems investigations. The paper is organized as follows. General equations and
Rather frequently we deal with systems possessing one/arious approaches for solution of considered problem are
dimensional periodicity. In particular, these problems occuiPresented in Sec. Il In Sec. lll we consider the Green's
in acousto-optic$1], holography[2], integrated and optical function in periodic media with a large-scale periodicity. In
electronicg 3], x-ray diffractive optic§4], and propagation Sec. IV the origin of forbidden zones is discussed. In Sec. V
of waves in multilayer coverings. we study the wave propagation in the wave channel.
Recently the special interest appears to be research into
electromagnetic wave propagation in three-dimensional peri- Il. GENERAL EQUATIONS
odic dielectric structuregphotonic band structurg$5-8|. . . . : ;
Much attention is devotﬁ% to research into anifgtropi]c and Let us consider the propagation of waves in an isotropic

hydrotropic periodic media. In particular, many interestin nhomogeneous medium. In what follows we are not inter-
Y PIC peri -Inp S y Yested in polarization effects. Then the field of the wave
results are obtained for the optics of liquid cryst@s

When studying the propagation of waves in periodic sys—u(r’t) obeys the scalar equation

tems the basic attention is paid to eigenwaves. However, the 1 52
solution of many problems requires knowledge of the ( —
Green’s function of the wave equation, i.e., the field of a
point source. Particular attention has been paid to studying ) ) ,
Green's functions for systems with a complex structureherec(r) is the velocity of the wave and(r) is the am-
[5,10-14 plitude of the wave.

’ ’ in fi — —iwt

The medium with one-dimensional periodicity was con- FOr harmonic time dependence(r,t)=u(r)e™"", we
sidered in[10,11,13. The complexity of the problem can be &rrive at the Helmholtz equation
seen in the fact that, in contrast to cases of the ordinary 2
) ! T o + =
isotropic and anisotropic media, in our case the Green's [A+kA(N]u(r)=0, 2
function depends on both vector arguments separately. Forgherek(r) = w/c(r) is the wave number.
weakly inhomogeneous medium with a small-scale periodic- | et the medium be periodic along tledirection with the

20 %>u(r,t)zo, (1)

ity the Green’s function was considered[itd]. _periodd. Thenk?(r) can be presented in the form
In the present work we study systems with an arbitrary
amplitude of periodicity for cases of period being large com- k?(r)= k§[1+ f(2)], ©)]

pared to the wavelength. The Green'’s function is calculated

for any distances from the source. The case of large distanc&gheref(z) is a periodic functionf(z+d)=1(2).

is analyzed in detail. It is shown that forbidden zones existin The Green'’s function satisfies the following equation:
such media. For directions outside of the forbidden zones the )

structure of the field is similar to one in the media with [A+ko(L+F(2)]T(p—p1;2,21) = 6(r —r31) 4
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and the condition of radiation. Hege=(x,y) is the compo- an amplitude of nonhomogeneity, adds the period of the
nent of ther vector normal to the axis, andd(r) is a three-  structure. In this case E) is reduced to the Mathieu equa-
dimensionals function. Due to spatial periodicity along the tion
z axis the Green'’s function depends on both argumeaisd
z, separately.

Since the medium is uniform in the transverse playe &2

2 2 —
we use a two-dimensional Fourier-transform of E4), P — g’ +kg+kyn cog2az) |u(z)=0. (10

The formal solution of the Hill equation is knowid6], but
T(9;z,2)=48(z—z;). (5  obtaining relevant numerical results is a difficult problem.
Even in the case of the Mathieu equation consistent analysis
requires introducing of small parameters. Namely, in Ref.
Here [11] a case of weakly nonhomogeneous media wjti 1
were considered. Due to the evenness offff® function it
is possible to take;(—z) for theu,(z) function. In this case

T(q;z,zl)=f dpT(p;z,z)exp —igp). (6) the solution(7) has the form

972

(72
{——q2+k3<1+f<z>>

Equation (5) with the radiation condition is the Sturm- 1 o ®(2)D(—2z,) at z=z,

. . . . _ T(q:z, = _g@lrlzmzlx
Liouville problem. Therefore it is pos,S|bIe to use the well (4:z.21)= D(z)(-2) at z<z,.
known theorems. Namely, the Green'’s function can be writ- (11)
ten as

The parametepn and functiond(z) were sought within the
1 (uy(2)ux(zy) for z=z,, framework of the perturbation theory for systems with the
T(0;2,21) = V—vx[ (7)  period of structure of the order of a wavelength, i.e., Kgr
~a. In such systems forbidden zones exist in the dase
) ] >a. The account of fields in the vicinity of forbidden zones
where uy(2),ux(2) are independent solutions of the corre- requires modification of the perturbation theory. When pa-
sponding homogeneous equation, rameterk,/« is large the number of forbidden zones in-
creases infinitely whereas their width correspondingly tends
to zero. In this case applying the Floquet theorem to descrip-
u(z)=0, ®) tion of the field becomes inconvenient. On the other hand, at
smooth periodicity the parameters of the medium vary insig-
nificantly at a distance of a wavelength and the WKB
with W=u,(2)uj(2) — u}(2)u,(z) being the Wronskian of method becomes more suitable for description of the field.

functions u,(z) and u,(z). Value W does not depend on

U(z)uy(z) for z<zy,

(92
E—q2+k3(1+f<z>>

z since Eq.(5) does not contain the firgt derivative. IIl. GREEN'S FUNCTION IN A MEDIUM
In order to construct the Green’s function satisfying the WITH A LARGE-SCALE PERIODICITY
radiation condition it is necessary to take(z) describing ] )
the wave propagating at—+oc, andu,(z) should describe ~We consider a case when parameteis not small, and

similarly the wave propagating along tlze- —o direction. the period of strycturd is much greater than the wavelength
Equation (8) is the Hill equation and, according to the M=27/ko, thatis,d=ko/a>1.

Floquet theorem the solutions(z) andu,(z) can be written Let us introduce the dimensionless variable az. Then
as[15] Eq. (10) is written as
uy(2)=D1(2)€'#%,  uy(z)=Dy(z)e '*2 9) ? o

— — —=+0Q31+ 7 cos %)

b uH=0. (12

where®,(z) and®,(z) are periodic functions af with the
period d, and u is a constant. The functions;(z),
(i=1,2) and constant are determined by the parameter.
For certain values of the constani. becomes complex and
wavesu,(z) andu,(z) decay and increase, respectively. The

region of these values af corresponds to the so-called for- Ulz(Z)ZF(m)(q,az)ex;{ iiQfang’F(q,fr) ,
bidden zone$§16]. In coordinate representation these regions ' azgy

Solving Eq.(12) by the WKB method we get in the first
approximation

yield exponentially small contributions to the Green’s func- 13
tion asymptotics atr—r,|—c. An exception is the case
whenr andr, are in the same layer. wherez, is an arbitrary coordinate determining amplitudes

We consider an inhomogeneous medium witfiz) of the functionsu;(z) and u,(z) and functionI'(q,§) is
=y cos(2z), wherea=mn/d, <1 is a factor, describing equal to
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2 w2 d(ﬂ
q
I'(q, :\/1——+ cos %. 14 K(a)= — ,
It is easy to verify that the Wronskian of the functions o
u4(z) andu,(z) does not depend onand is determined as E(a)=J dos /1—a25in2¢, (20)
W= —2iky. Then Green'’s functioi7) has the form 0
i
T(q;2,21)= [ dy
2koI'(q,a2)TY4(q,az) F(¢.a)= o V1_aZsity

xex;J(iinzdgr(q,g)D. (15)

Then the solution of Eq(19) may be written as

In coordinate representation we get lp—pil 2|z—2,|

i Ost w\/koz—qzt—l— 77k0z
T(P—Pli2121)=8—q f dq °

™ Ko K 277k(2)
exifi Q][22 dET(q.£)| +a(p—p1))] M Vig—qzr e

X
1/2( q, CYZ) r 1/2( q, azl)

+B(z,zy), (21

(16) whereB(z,z,) is the periodic function,

Equation (16) describes the Green’s function at any dis- 1
tances. We are interested in the asymptotics of the Green's B(Z.21)= akol'(ds,0)
function in the far zone. So we calculate the integral in Eq.

(16) for |[r—rq|>\ by the method of the stationary phase 27 27

[17]. In order to do this it is necessary to find a stationary X|F| ez F(qst,O)) _F( RE F(ano))‘
point g5; and to expand the exponent in Taylor series over

p=(dg—qs) up to terms of second order. In all nonexponen- _ 2|2z 27y 22)
tial factors it is possible to sey=qs;. The remaining Kol (0s,0)  \ T'(Qs,0) )

Gaussian integral is easily calculated:
As seen from Eq(22) the stationary poings; depends on the

2mo difference vector —r; and coordinatez and z; entering
J ex pHp - (17 into functionB(z,z;) separately.
|detH| The Hesse matrix in E17) has the form
HereH is the real symmetric matrix of the second deriva- az
tives calculated af= g5, (Hesse matrix The factoro in Eq. HaB(q)zquan( Q‘ f dér(q,é) +q(p—p1))
(17) depends on signs of real eigenvalyesand u, of the @z
H matrix: for u;>0, uy>0, o=1; for wu,<0, o=—i; Q| fer dé 0t
for <0, u,<0,0=-1 [17]. :—Ez J m 5aﬁ+k22— .
The stationary poingg, is determined from the equation 0]Jen ' ol “(a,6)

(23
+Q(p—p1)) =0. (18

Vq(QU:ldgr(q,@

The Hessian is equal to

Equation(18) may be rewritten as
detH=

e
kdlp—p4l _Q f dé I 1 Ko | Jaz; I'(dst,€)
Ost Do, 8] B W p=p "

(19

qst
5] (” kSF"’(qst,g))" @9

We take into account that the primitive of a periodic func-
tion can be presented as a sum of a linear function and According to Eq.(23), in this caseu;<0 and u,<0 and
periodic one with the same period, as that for the initialfactoroc=—1 in Eq.(17). Using Eqs(16), (17), and(24) we
function[15]. In what follows we will use the Legendre el- arrive at the expression for the Green’s function in the far
liptic integrals[18] zone:
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T(p—p1;2,21)

eXF(iQ| gildgr(qstagﬂ+iQSt|P_P1|)
 AakoT Qg a2) T Mgy, azy)

qstdz

» lp—pl (Ip—pll J
77 kOF (qst,aZ )

qst QSt

-

(29

Deriving this expression we have simplified determin@d)
using Eq.(19).

We analyze the behavior of the Green’s function at dis-

tances|z—z;| considerably exceeding the periad In this
case functiorB(z,z;) in Eq. (21) may be omitted, and the
exponent in the expression for the Green’s funcii@d is

12
I[;|z—zl|¢k3—q;+ ”

o

Equation(21) shows that in this casg; depends on relation
|z—z,|/|p— p1| oOnly. Presenting Eq.26) in the form

2

S| +asdp—pul |-

(26)
— a5+ 7k§

i[dAz—2z1)+ s p—p1) ], (27)

[ 2 nkg )
k§— a2+ mkg)

(28)

where

2 H 2 2 2
q,=—signz—2;) Vk§— a5+ 7koE
o

one can see that three-dimensional ve&tgr (qs:,q,) may
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FIG. 1. Cross sections of a surface of wave vectors by a plane,
containing thez axis, for different depths of modulation: 1, »
=0.1; 2,7=0.8 forky/a=20. The dotted line shows the forbid-
den zones}y,ax is the maximal possible angle between the wave
vector andz axis for =0.8. It is seen that the value &f, deter-
mining the phase speed of a wave weakly depends on the wave
vector direction. All wave numbers are expressed in termis,of

7|sin 2az—sin 2oz
4a|z—24

:k0|P_P1|
U r—ry|

) . (30

In this case the phase of the Green’s function has the form

Kolr —rq|| 1+ (31

7|sin 2az— sin 2oz,
4a|z— 274

be considered as a wave vector. Since this vector does not

depend on absolute values of coordinatemdz; the prop-

These formulas are valid if the condition|r—r,|?<4

erties of the medium become similar to that for the spatially(z—2z,) is fulfilled. Note that withy— 0 the amplitude fac-

homogeneous media. The Green’s function in cases,|
>d is

exfiKs(r—ry)]
T 12,2 29
(p—p1;2,21)= A7R(p—prizz)’ (29
where
R(P_Pl;z,zl):korllz(%tvaz)rllz(Qst,azl)
lp—pil [lp—p1]  20%]z— 2|
X +
Ost Ost k3

1/2

d¢’ )
F3(qst,§’)

/2
X f
0

tor R(p—p1;2,21)—|r—r4| and the Green's functiori29)
passes into that for a homogeneous medium. Equa8tn
shows that the constant phase regions for the Green’s func-
tion are the spherical surfaces with small periodic distortions.
The corrections in Eq$30) and(31) depend not only on the
difference|z—z,|, but also on values of andz; .

The spatial periodicity at large distances leads to devia-
tion of the wave vector surfaces, E(8), from spherical
ones. As long as the medium has an axial symmetry, these
surfaces are similar to those with the wave vectors of
uniaxial anisotropic media having the form of ellips$i®].
However, in our case they are more complicated.

Figure 1 shows thg-z plane cross section of a surface
of wave vectors, calculated from E{8) for two values
of parametery that describes the depth of modulationy
=0.1 and 0.8. One can see that these surfaces are discontinu-
ous and the breaks are increased with growthzofThis

For a weakly inhomogeneous medium, i.e., at small valudreak corresponds to the forbidden zone, i.e., to the restric-

of 5, Eq.(19) for q5; and the expression for Green’s function tion for possible directions of wave vectoks;.

(25 admit additional simplifications. In lowest order in
Eq. (19 is easily solved and we get

Formally
emergence of the forbidden zones is a consequence of the
functions E(a) as well asK(a) and F(¢,a) in Eq. (20
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-5 zones appear when the size of the inhomogeneities is of the
- s order of the wavelengtfl6]. In order to understand the ori-
gin of the forbidden zones in our problem we introduce the
2 f refractive index
0
g [ ¥ mar P=h n(z)=\1+ 7 cog2az). (35)

This value varies in the limits/1— »<n=<1+ . In the
geometric optics approximation we introduce the concept of
a beam trajectory described by the cupre p(z). Since the
beam curve in a stratified isotropic medium is in the plane of
FIG. 2. Constant phase surfaces of waves radiated by a poiifcidence, we introduce for convenience the coordinate sys-
source. Curves are calculated for the same parameters, as in ttem with they axis lying in the same plane. In each point
previous figure. One can see that at large distances the group speggl,z) the beam obeys the relation
of a wave along the direction of the periodic structure is appreciably

less than in the transverse direction. Hefg,, is the limiting angle n(z)sin x(z)=C, (36)
of the normal inclination to this surface a&ds the angle between ) . .
wave and beam vectors. where C is the positive constant ang(z) is the angle of

incidence being counted from the plane normakd=< yx

being real only fofa|<1. As seen from Eq28) this restric- ~ =m/2. Equality (36) is the Snells law. The anglg(z) is
tion leads to inequalitiesq?=<q?2,=k3(1—75) and g, related to the beam trajectory by the equation

= Qmin= (2/7)Ko\27. If Qs> 0may the functionE(a) and tart(2) =V’ (2)12 3
consequently), become complex, and the waves decay with arx(2) =y ()" S
the extinction length of the order of the wavelength. dte  From Egs.(36) and (37) we get

the angle betweekg; and axisz:

Cc
Ost V()= (38

tan y= P (32) “Jn%(z)-c?

Then the restriction on possible directions of wave vector
ks can be written asr/2— yynax=<|y— 7/2|< /2, where

g-lere signs plus and minus correspond to parts of the beam
wherey(z) increases or decreases withrespectively. To be
definite we choose the part with sign plus. As far as our

I 7 problem is concerned(z) is the periodic function of it
2y’

Omax ™
Ymax= arctan—— = arctanz

; 5 (33)  follows from Eq.(38) that the derivativey’(z) is a periodic
min

function of z also. Performing a transition similar to that
Similar to the uniaxial medium in our case the directionsf™om EQ. (19) to Eq.(21) we can write

of the beam vector determining the flow of energy and the (o

wave vector do not coincide. The ang&between these y(2)=9(z=2) +M(2), (39)

vectors can be calculated if we take into account that thgyhereM(z) is a periodic function with a zero averags, is

we have of they(z) curve,

sind+ g,cosd ala

Ccos 6= 958177 9,009 > qzz , (39 g= £ ! dz
Va5 + 2
Js¢+ a3 7 Jo 1+ 7 cog2az)—C
where @ is the angle between treaxis and vector —r . 2C 27
Figure 2 shows a cross section of a surface of beam vec- = K( —2) (40

tors corresponding to the surface of a constant phase for a m\1+7—C? 1+9-C

point source. It is seen that this surface has a break at
=z,. This break corresponds to the forbidden zones. Th

normal to the beam surface determines the direction of _\/— i e . .
wave vector. The existence of forbidden zones limits the™ 1— 7. According to Eq(40) variation ofC in the region

allowable angles between the normal to the beam surface af= €< V1~ 7 leads to variation of in the limits from 0 up

z axis by an angley,... As a result we get the picture 0% since the functiorK(a) has a logarithmic divergence at
presented in Fig. 2. a—1. Thus, changing the initial slope of the beatfr;) in

the pointz; and hence the paramet&, we can observe
beams with an arbitrary relatiofp—p,|/|z—2,| at large
|z—z,|. This means that the surface of beam vectors, Fig. 2,
has no forbidden zones. Figure 3 shows the trajectories of the
beams outside of the forbidden zone.

The existence of forbidden zones in media with large- In order to explain the emergence of a forbidden zone on
scale inhomogeneities seems strange. Usually forbiddetine surface of wave vectors, Fig. 1, we introduce the wave

s long as the functiork (a) is real for|a|]<1 the value of
he C parameter is limited by the conditiol€<C,

IV. ORIGIN OF THE FORBIDDEN ZONE
IN MEDIA WITH ONE-DIMENSIONAL
LARGE-SCALE PERIODICITY
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FIG. 3. Beam trajectories outside of the forbidden zo@e,
<C, . The curves are obtained by numerical calculation for
=0.5 and different values o€: 1, C=0.6; 2, C=0.7; 3,C
=0.707.

vectork corresponding to the given beam. For this purpose
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(43

[ 27
1+ 77—C2 ’

It follows from Eq. (43) that limiting value C=C,
=/1— 5 corresponds to the relation

2k
kz=7o J1+ n—c?E(

Ky

K,

T [1-9
=5 27 (44)
which exactly coincides with the restriction imposed on the
angle y betweenk; and thez axis in Eq.(33).

Thus, for the introduced wave vect&r=(k, ,k,) there
exists a forbidden zone since@t-C, the componenk, in
Eq. (43) becomes complex and the wave starts to decay. The
latter means that for sudb the wave could not propagate at
long distancez since the extinction is of the order of the

wavelength.

V. FORBIDDEN ZONE AND 2D WAVEGUIDE

we consider variation of the field phase along the beam be-

tween the points;=(y;,z;) andr=(y,z),

r
‘szof nds,
r

1

(41)

wheres is the distance along the beam;z,. Using the
expression for an element of an ais=\1+[y’(z)]?dz
and Eq.(38) we present integradl) in the form

z

W =koC(y—y1)+ko f n?(z)—C2dz (42

Z

According to Eq.(42) a transverse part of the wave veckor
is equal tok, =(0k,), ky=KkoC. The longitudinal part of
the wave vectok, can be calculated if we take into account,
that the phas¢42) coincides with the phase of the wave in
Eqg. (25 at C=q/ky. Using arguments similar to those in
transition from Eq.(25) to Eq. (26) we get

-4
2

From the point of view of the geometric optics this effect
can be explained by the turtireflection”) of the beam,
which is possible if the refraction index decreases in the
direction of the beam propagati¢20]. As a result the beams
with C>C, appear to be “trapped” within the limits of one
layer (Fig. 4). The length of the beam trajectory between two
successive reflections can be determined by integrating the
right-hand side of Eq(38). In order to describe wave propa-
gation in the framework of geometric optics it is necessary to
sew segments of a beam with indices plus and minus in Eq.
(38) taking into account ther/2 phase change at each reflec-
tion. This approach describes the beam everywhere exclud-
ing the turn pointg20].

The planegz=z; where the beams change their directions
(are reflecteflare determined by the condition syz)=1 in
Eqg. (36), i.e.,

(45

where z; is the position of the sourcéz;|<d/2. Equation
(45) has two solutions,

n(zy)sin x(z1) =n(z),

n?(zy)sirfx(z;) —1
" .

1
+—— arccos

£ (46)

21,2~

The beam will propagate between planesz, and z
=1z,, alternately being reflected from each of them.

So a plane channel of wave propagation is formed. The
boundaries of this channel are the plarresd/2 and z=
—d/2 where the refractive index(z) is minimal. The waves
trapped in this channel satisfy the condition

n(zy)sin x(z,)=v1-7=C,. (47)

The width of the channet,= |z, —z,| for a particular
beam depends on the paramefer The widthz,—0 for C
— 1+ 7 andz;—d for C—/1— 5. Note, that in the limit
C—+/1- 7 sliding incidence takes place, and the beam ap-

FIG. 4. Beam trajectories in the wave channel. Curve 1 correproaches asymptotically the plame d/2 (or z= — d/2) with-

sponds to a trajectory at (15)Y2<C<(1+ #)¥2% curve 2 is the
limiting beam forC=C, =(1— )2

out reflection. This beam is also locked in the wave channel
(beam 2, Fig. &
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oy, Expressiong46) and (48) show thatz; andy; may be con-
sidered as functions & =n(z;)sin x(z;). At C— y1— 7 the
distancey,—o. With increasing ofC the functiony, de-
creases, passing through its minimum,,,, and y,
=dy(1+ n)/2np atz—0, i.e., forC=+1+ 7 (Fig. 5.
24 First, we estimate the asymptotics of the Green’s function
at |p—pi|—= based on simple physical grounds. The
waves, satisfying the conditio@d7), will remain in the plane
layer —d/2<z=<d/2, at any|p—p,|. Therefore the energy
density of these waves will decrease as—r,| !
~|p—p1| ™! with increasing the distance from the source.
Hence the amplitude of the field of a point source behaves as

22 T

oy.

o Ir—r,|"Y2 at |r—r,|—% when pointsz and z, are in the
same wave channel. It differs from the usual situation
Y i |z—z1|—, when, according to Eq25), the amplitude of a
field decreases ds—r,| 1.

In order to find a field of a point source in the wave
channel it is necessary to take into account all orders of
FIG. 5. Dependence of the distance passed by a beam betweégflection [20]. The field inside the wave channel may be

two reflections along thg axis calculated apy=0.5. written as

. .
08 09 1 11 T

C

From Eq.(38) it is possible to get a distance passed by the

: _ T(p—p1;2.21)= 2, Tn(p—p1;2.2), (49)
beam between two successive reflections N

where Ty(p—p1;2,21) is the contribution to the Green’s
function of waves undergoinfyl reflections. This contribu-
tion differs from Eq.(16) as long as in this case it is neces-

yi(z1,x(21))

22 dz

(48)

SNERISNX@) | T )

. resfifon

az(

Zip(q)

sary to take into account the contribution of multiple reflec-
tions to the resulting phase:

a) N (m)
dér'(g,é€)+a(p—p1) — 7"‘ ovy

TNuo—;r»l;z,zl):E1 j dq

m=

(50

8wk Y4 q,a2) Y4 q,az;)

ValuessW (W= s¥{"(z,z,,q) are contributions to the total phase of distances betweand the first reflection and between
the last reflection and, respectively. If the first reflection occurs in the plarvez;, the indexm=1, while if it occurs in the
planez=z;, indexm=2. Functions,;(q) andz;,(q) are determined by E¢46) with C=q/k,. NumberN in Eq. (49) varies
in the limitsN=0 andN=|p—p1|/Ymin-

At |p— p1|— < integral(50) can be calculated by the method of stationary phase, as it was in the case of the integral in Eq.
(16). The equation determining the stationary pdaigfy has the form

|p— p1| = Nyi(dsen) + 5p\" (51)

where 5p{{" = 6p"(z,2,,9sn) is @ sum of distances passed by the wave alongthgis (i) from the source; to the first
reflection andiii) from the point of the last reflection to the observation poirifhe functiony,(q) is determined by Eq48)
with C=q/ky. Then Eq.(50) can be written as

Tan(p—p1;2,20)= 2 T(AsiniP—P132,21), (52

OstN

where

T(q;p— p1:2.2)=— 0q¥¥{?(q)|y{ (q)

2
. _ azg(q) A .
exu[llp—pll(cﬁkoyt 1(q)(f dgr(q,a—zm >, expliswy")
|—1/2 aZtp(9) 1
4ako|p— po| TYA(q,a2) TV q, az) '
(53
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FIG. 6. Distribution of intensityd={|T(p— p1;2,21)|%)|p— p1|

inside the wave channel §— p,|—, for the source at the point
(p,0), calculated aty=0.5.

The summation oveqg;y in Eg. (52) takes into account the

possibility of the presence of several waves for any set_

(N,m). Itis seen from Fig. 5 that periogl can correspond to
two different values of the paramet&. According to Eq.
(51) this means that one set dii{m) can correspond to two
different values ofgsy, i.€., two waves radiated from the
source.

We study thez dependence of intensity proportional to
|T(p—p1;2,21)|? at|p— pi|—o¢ in the wave channetd/2

<z=d/2. For further analysis it is convenient to pass from

the summation oveN andqg;y to the summation over sta-
tionary pointsq(s't) , corresponding to all waves, radiated in
and transmitted to the observation pointThe set ofq},
i=12,...
have

I T(p—p1;2,21)|?

_2 T(qst P~ P17, 21)2 T*(q(sjt),l’ P1,2,21).
qSt qst

(59

The experimental measurements of intensity always imply
a procedure of averaging over time, sizes of the source and
the receiver, random inhomogeneities, etc. Therefore the

contributions of terms with a large differenckq=q(})

—q{) may be omitted since their phases are not correlatedience forsq= q(' V-

Preserving in Eq(54) only terms with small differencaq
and taking into account that the averaged moduleTof
(q;p—p1;2,27) is a smooth function of], the average inten-
sity (| T(p—p1:2,21)|?) may be written as

GREEN'S FUNCTION OF WAVE FIELD IN MEDA . ..

is enumerated in increasing order of values. We

1191

(I T(p—p1;2,21)|%)

—2 IT(ay ;p— p1;2.2)|?D(aY .p— p1.2,20),
qst
(59
where
1 2
D(ay) p=przz1)=5 2 > (exliavwii(q)])
m=1 Aq

(56)

is the factor taking into account the interference effects
between waves with close numbers of reflections.
Here Aq(l)_Aq(I)(q(st)) qi—al) and A¥{(af)
W (al ) =¥ (q?) (the latter being the phase differ-
ences of waves with wave numbers*" andq(). As long
as only the terms with smallinterfere, it is possible for the
summation oveAqy in the functionD to spread from—
up to + .

Since the terms witim=1,2 do not interfere we get from
Eq. (53

IT(a;p—p1;2.21)|?
_ ayy(q)
872k3T (q,a2)T'(q,z1)|p— psl?ly: (9]
(57

Let us consider a wave with a wave numlggp . The
number of reflections undergone by the waWés a function
of q(') N=N(q{¥). For a wave with the nearest wave num-
berq D the number of reflections will change by 1. Ne-
glecting small add|t|on§p(m) we have from Eq(51)

lp—pil  [p—pi
L L (59)
vl  yal )
@ we get
2, (i)
B y(tlqut) ' (59)
(i) p—pyl

It is seen, that with the increase |gpf— p;| the sizeéq— 0. Therefore in the limitp— p;| — it is possible in Eq(55) to pass
from summation oveq{) to integration over. Then Eq.(55) is written as

komin[n(z1);n(2)]

D(quazl)qdq

<|T(P_P1;Z-Zl)|2>: (60)
Ko\ T=7 87°k3l (0,22)T (d,az1)|p—palyi(q)
or, passing to a variable=qg/k,, we get
-1
min[n(z1);n(2)] D(koC,z,2z;)dC { n(z’')=C dz'
T(p—p1:;2,2 2——f f ———— 61
R sy iz -Gtz -C2l Jo  nPz)-C? (©D
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Itis seen from Eq(61), thatT(p—p;;z,21)~|p—pi| M at  decreases more slowly thap—p,| L. The physical reason

|p— p1|—0 according to physical reasons discussed earlierfor such a change of asymptotic mtz) =n(z,) is that both
Figure 6 shows the distribution of the radiated energythe reception and radiation points are situated in the caustic

locked in the wave channel along th@xis. For this purpose regions. To remove the divergence and to obtain the

integral (61) is calculated atD=1, which corresponds to asymptotic a more detailed analysis of the field in the vicin-

neglect of interference between waves with different numity of the caustic is required.

bers of reflections. On boundaries of the wave channel the

intensity tends to zero, as the area of integration in (B ACKNOWLEDGMENTS

vanishes. Here we should attract attention to the presence of

a sharp peak at=z,. Formally it appears due to confluence  This work was partially supported by the International

in Eq. (61) of root type peculiarities at(z)=n(z;). In this  Soros Science Education Program and by the Russian Fund
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